Nonconvex Low-Rank Tensor Completion from Noisy Data
نویسندگان
چکیده
This paper investigates a problem of broad practical interest, namely, the reconstruction large-dimensional low-rank tensor from highly incomplete and randomly corrupted observations its entries. Although number papers have been dedicated to this completion problem, prior algorithms either are computationally too expensive for large-scale applications or come with suboptimal statistical performance. Motivated by this, we propose fast two-stage nonconvex algorithm—a gradient method following rough initialization—that achieves best both worlds: optimal accuracy computational efficiency. Specifically, proposed algorithm provably completes retrieves all factors within nearly linear time, while at same time enjoying near-optimal guarantees (i.e., minimal sample complexity estimation accuracy). The insights conveyed through our analysis optimization might implications broader family problems beyond completion.
منابع مشابه
Efficient tensor completion: Low-rank tensor train
This paper proposes a novel formulation of the tensor completion problem to impute missing entries of data represented by tensors. The formulation is introduced in terms of tensor train (TT) rank which can effectively capture global information of tensors thanks to its construction by a wellbalanced matricization scheme. Two algorithms are proposed to solve the corresponding tensor completion p...
متن کاملStatistically Optimal and Computationally Efficient Low Rank Tensor Completion from Noisy Entries
In this article, we develop methods for estimating a low rank tensor from noisy observations on a subset of its entries to achieve both statistical and computational efficiencies. There have been a lot of recent interests in this problem of noisy tensor completion. Much of the attention has been focused on the fundamental computational challenges often associated with problems involving higher ...
متن کاملBeyond Low Rank: A Data-Adaptive Tensor Completion Method
Low rank tensor representation underpins much of recent progress in tensor completion. In real applications, however, this approach is confronted with two challenging problems, namely (1) tensor rank determination; (2) handling real tensor data which only approximately fulfils the low-rank requirement. To address these two issues, we develop a data-adaptive tensor completion model which explici...
متن کاملCross: Efficient Low-rank Tensor Completion
The completion of tensors, or high-order arrays, attracts significant attention in recent research. Current literature on tensor completion primarily focuses on recovery from a set of uniformly randomly measured entries, and the required number of measurements to achieve recovery is not guaranteed to be optimal. In addition, the implementation of some previous methods are NP-hard. In this artic...
متن کاملLow-Rank Tensor Completion by Riemannian Optimization∗
In tensor completion, the goal is to fill in missing entries of a partially known tensor under a low-rank constraint. We propose a new algorithm that performs Riemannian optimization techniques on the manifold of tensors of fixed multilinear rank. More specifically, a variant of the nonlinear conjugate gradient method is developed. Paying particular attention to the efficient implementation, ou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Operations Research
سال: 2022
ISSN: ['1526-5463', '0030-364X']
DOI: https://doi.org/10.1287/opre.2021.2106